Accelerated Gossip in Networks of Given Dimension Using Jacobi Polynomial Iterations
نویسندگان
چکیده
منابع مشابه
Consensus for Quantum Networks: From Symmetry to Gossip Iterations
This paper extends the consensus framework, widely studied in the literature on distributed computing and control algorithms, to networks of quantum systems. We define consensus situations on the basis of invariance and symmetry properties, finding four different probabilistic generalizations of classical consensus states. We then extend the gossip consensus algorithm to the quantum setting and...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
Combinatorics of Polynomial Iterations
A complete description of the iterated monodromy groups of postcritically finite backward polynomial iterations is given in terms of their actions on rooted trees and automata generating them. We describe an iterative algorithm for finding kneading automata associated with post-critically finite topological polynomials and discuss some open questions about iterated monodromy groups of polynomials.
متن کاملDimension Reduction Techniques for Training Polynomial Networks
We propose two novel methods for reducing dimension in training polynomial networks. We consider the class of polynomial networks whose output is the weighted sum of a basis of monomials. Our first method for dimension reduction eliminates redundancy in the training process. Using an implicit matrix structure, we derive iterative methods that converge quickly. A second method for dimension redu...
متن کاملJacobi iterations for Canonical Dependence Analysis
In this manuscript we will study the advantages of Jacobi iterations to solve the problem of Canonical Dependence Analysis. Canonical Dependence Analysis can be seen as an extension of the Canonical Correlation Analysis where correlation measures are replaced by measures of higher order statistical dependencies. We will show the benefits of choosing an algorithm that exploits the manifold struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Mathematics of Data Science
سال: 2020
ISSN: 2577-0187
DOI: 10.1137/19m1244822